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Structure-adaptive Neighborhood Preserving
Hashing for Scalable Video Search

Shuyan Li, Xiu Li, Jiwen Lu, Senior Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract—In this paper, we propose a Structure-adaptive
Neighborhood Preserving Hashing (SNPH) method for unsu-
pervised scalable video search. Unlike most existing hashing
methods which equally encode an entire video into a binary
feature vector, we propose a neighborhood attention mechanism
which encodes the neighborhood-relevant content of a video to
better preserve the neighborhood relationships among videos.
Motivated by the fact that a video usually contains multiple shots
and each shot depicts a different activity, we further develop a
structure-adaptive encoder to model the hierarchical structure of
the video. Specifically, the encoder adaptively divides each video
into multiple segments via detecting temporal boundaries across
frames and encodes these segments as a compact binary vector to
capture rich structural information. We integrate the neighbor-
hood attention mechanism into the structure-adaptive encoder
to learn hash functions that jointly preserve the neighborhood
relationships among videos and exploit the hierarchical structure
in a video. Experimental results on three widely used benchmark
datasets show that our proposed method consistently outperforms
state-of-the-art unsupervised video hashing methods.

Index Terms—hashing, video search, structure-adaptive, neigh-
borhood preserving, unsupervised.

I. INTRODUCTION

Over the past decade, we have witnessed a rapid increase of
video data on the Internet. For example, there are more than
1.8 billion videos on the YouTube video website with around
300 hours of videos being uploaded per minute. Meanwhile,
a variety of video applications such as SnackVideo and Tik
Tok have sprung up like mushrooms, resulting in explosive
growth of online video data. The explosion of video data
makes fast video search extremely important, however, con-
ventional nearest neighbor search methods using exhaustive
linear scanning are infeasible due to tremendous computational
complexity and storage requirement [1]. To enable efficient
scalable search, hashing-based approximate nearest neighbor
search approach, which transforms high-dimensional data to
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compact binary codes, has been developed and soon become
a popular tool [2]–[18]. While existing hashing approaches
have achieved promising performance in image search, only a
few methods are designed to tackle scalable video search [19]–
[25].

Compared with images, videos contain special structure
such as temporal consistency and scene shift. It has been
shown that exploiting the structure information can improve
the expressive capability of video representations [26]–[28].
Early video hashing methods attempted to exploit the struc-
ture information via applying similarity constrains across
frames [19], [29]. However, they considered a video a set
of independent frames and ignored the temporal order of the
frame sequence, which inevitably led to suboptimal binary
codes. More recently, the success in deep neural network
for representation learning has inspired lots of video hashing
algorithms [25], [30]–[35]. These deep learning based hashing
methods have shown great potential for extracting the temporal
information in videos and achieved state-of-the-art in video
search. In general, they equally compress an entire video into
a binary vector via deep neural networks connected with a
hash layer. Since videos usually contain superfluous and even
ambiguous content which may interfere with nearest neighbor
search, absorbing entire content from a video will lead to
unsatisfactory hash functions [36]. On the other hand, none
of these methods consider the hierarchical structure of videos,
i.e., a video usually contains multiple shots which depict
different activities [37]. For example, in Fig. 1, there are three
shots in the input video which successively depict “whipping
the cream”, “folding the sponge cake” and “buttering”. Based
on the content in these shots, one can conclude more structured
information such as “making cake”. We argue that ignoring
such hierarchical structure will hinder the network from better
understanding the content of a video and limit the search
performance.

To address the aforementioned issues, we propose a
Structure-adaptive Neighborhood Preserving Hashing (SNPH)
method for scalable video search in an unsupervised manner.
For each video, we derive a neighborhood representation,
a vector representation of a pseudo neighbor or integration
of several pseudo neighbors of the video. We embed the
neighborhood representation into the SNPH encoder to fa-
cilitate neighborhood preserving encoding. Specifically, we
propose a neighborhood attention mechanism that focuses on
partial useful content in each input frame instead of equally
encoding the entire content, guided by the neighborhood rep-
resentation. We further develop a structure-adaptive encoding
network which captures the hierarchical temporal structure
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Fig. 1: The flowchart of SNPH. The neighborhood representation is embedded into the encoder to guide neighborhood preserving
encoding. The SNPH encoder is in a hierarchical recurrent architecture. The encoder first detects temporal boundaries across
frames to adaptively divide a video into several segments and independently encodes them to latent representations. Then it
encodes these latent representations of segments as a compact binary vector. A decoder reconstructs the frame features from the
binary vector. Triangle denotes the neighborhood attention mechanism. Purple LSTM rectangle denotes initializing/reinitializing
LSTM. Red lines denote time boundaries across frames and LSTM in red box means that a time boundary is detected. We
omit the Binarization, neighborhood representation calculation, and frame feature extraction for brevity.

in the video to transform each video to a binary vector. In
detail, it adaptively divides each long-range video into several
segments via automatically identifying time boundaries across
frames, and then encodes these segments as a binary vector.
We integrate the neighborhood attention mechanism into the
structure-adaptive encoding network such that the hierarchical
structure of the video is exploited to learn neighborhood
preserving hash functions. Furthermore, we develop a pseudo
label set, where each point in this set has the same dimension
as code length, for self-supervised training. As the pseudo
label space is of high dispersion, we enforce the binary
vector to approximate the corresponding pseudo label such
that a more discriminative Hamming space can be learned.
We design SNPH in an encoder-decoder framework, where
the flowchart is detailed in Fig. 1. Experimental results on
three public benchmark datasets show the effectiveness of
our proposed SNPH compared with the state-of-the-arts. We
briefly highlight the contributions of this work as follows:

1) We embed a pre-extracted neighborhood representation
into the encoder such that it guides to encode useful content
in the video to facilitate neighborhood preserving. Specifically,
we develop a neighborhood attention mechanism that focuses
on partial useful content from each input frame, conditioned
on the neighborhood representation.

2) We design a structure-adaptive encoding network for
hash learning to leverage the hierarchical temporal structure of
the video. The structure-adaptive architecture can efficiently
capture the temporal dependencies both intra-activity and
inter-activities via detecting time boundaries. We integrate the
neighborhood attention mechanism into the encoding network
to learn neighborhood preserving hash functions.

3) The experimental results on three real-world datasets

show that our proposed SNPH significantly outperforms the
state-of-the-art unsupervised video hashing methods.

This paper is the extension of our previous conference
paper [34], but it differs in several aspects from that work.
While a video may consists of multiple shots which depict
different activities, NPH fails to exploit such hierarchical
structure of the video. We design a structure-adaptive neigh-
borhood preserving encoder based on two-layer LSTMs, which
automatically detects time boundaries in each video, to replace
the single-layer LSTM based NPH encoder. The proposed
encoder adaptively divides each video into several segments
and encodes them into a binary vector, such that the temporal
dependencies both within activity and across activities is better
captured. To learn more discriminative hash functions, we
further develop a pseudo label set for self-supervised training
where the dimension of each pseudo label is the same as the
code length. We enforce the binary vector to approximate the
corresponding pseudo label, such that the intra-class distance
is minimized and inter-class distance is maximized in the
Hamming space. Experimental results verify the efficacy of
our proposed method.

II. RELATED WORK

In this section we briefly review existing content-based
video search methods and representative video representation
learning methods.

A. Content-based Video Search

Content-based video search aims to retrieve relevant videos
for a query video. Since a video is usually represented
by a sequence of high-dimensional frame features, directly
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calculating the distance in the high-dimensional video space
is of high computational complexity [38]–[41]. To reduce
the computation cost of linear scan, Approximate Nearest
Neighbor (ANN) search methods were proposed [42]–[44].
Among these ANN methods, hashing which projects a video
to a low-dimensional binary vector efficiently reduces the
computation and storage cost, and is widely applied to scalable
video search [6], [19], [21]–[24], [35], [45].

For example, Ye et al. [19] exploited the spatial information
within each frame and temporal consistency between frames in
a video to design hash functions. Chen et al. [19] explored the
scene structure by minimizing the distances between frame-
level binary vectors within the same scene. Hao et al. [21] ex-
ploited Student t-distribution to estimate the similarity between
hash vectors of video frames. Li et al. [46] and Qiao et al. [47]
focused on face video search where the query was usually
a face image. The above-mentioned methods can be classi-
fied as supervised hashing. Generally speaking, supervised
paradigms can achieve higher performance than unsupervised
ones, whereas they are less practical for large-scale database
due to the huge time- and labor- cost for labeling.

Unsupervised video hashing methods utilize data properties
instead of labels to learn discriminative hash functions. Re-
cently, deep neural networks have been applied to learn hash
functions in an unsupervised manner and have achieved state-
of-the-art performance [25], [31]–[33], [48], [49]. Among
them, Zhang et al. [31], Song et al. [32] and Li et al. [33]
proposed to learn hash functions via minimizing the feature
reconstruction error. Wu et al. [48], [49] learned balanced
features by minimizing quantization distortion when mapping
video features to a binary hypercube. Li et al. [25] designed
a variational auto-encoder to generate binary codes. Whereas
these methods have two weaknesses. On one hand, they ignore
the fact that a video usually contains multiple shots which
depict different activities, thus under-use the hierarchical struc-
ture in the video. On the other hand, they equally exploit entire
content from the video, which is likely to absorb irrelevant
information and results in performance degradation.

B. Video Representation Learning

In an early stage, quite a few works aggregated frame-level
CNN features [50] with different fusion strategies to represent
videos [22], [51]–[53]. A major drawback of these methods is
that they neglect the order of frame sequences and under-use
the temporal structure of the video. Then Simonyan et al. [54]
proposed two-stream ConvNets to simultaneously exploit the
optical flow and appearance information. Inspired by [55],
[56], Tran et al. [57] proposed 3D ConvNets to generate video
representation. However, they are only capable to capture
temporal information in short video clips.

Inspired by the success of Recurrent Neural Net-
works (RNNs) and Long Short-Term Memory (LSTM) net-
works [58], [59] in sequence to sequence learning [60], [60]–
[62], Ng et al. [26] exploited LSTM to learn the temporal
order in videos. Venugopalan et al. [63] then proposed stacked
LSTM to improve non-linearity for better performance. How-
ever, it has been shown that LSTM works well only when

videos are 30 to 80 frames long [26], [63]. To efficiently
model longer video clips, Pan et al. [64] proposed hierarchical
recurrent video encoder to dramatically shorten the input path.
Song et al. [32] extended it to self-supervised video hashing
and achieved promising search performance. They manually
divided a long video clip into several short frame segments
as input. However, such hand-crafted partition is hard to
reveal the temporal structure and an inaccurate partitions
may cause information chaos [65]. To solve this problem,
Baraldi et al. [37] proposed a special LSTM cell which
was able to identify discontinuity points between frames. We
integrate such LSTM cell into our model to better explore and
leverage the temporal structure of the video.

III. APPROACH

A. Overview

Given a collection of N videos, SNPH aims to learn a
deep hash function F that encodes each video into a k-bit
binary vector b ∈ {−1, 1}k while preserving neighborhood
relationships among videos. Instead of equally absorbing entire
content from the video, we embed a pre-extracted neighbor-
hood representation n into the encoder to provide guidance for
neighborhood preserving encoding. We present the encoding
process as follows:

b = F(S,n,Θ), (1)

where Θ is the parameter set of the SNPH encoding network,
namely structure-adaptive neighborhood preserving encoder.
The input video S is represented in the form of frame features
{vf}Mf=1 ∈ RM×l extracted by a conventional Convolution
Neural Network (CNN). M is the length of the input frame
sequence and l is the dimension of the frame feature.

To formulate the structure-adaptive neighborhood preserv-
ing hashing, we firstly present the neighborhood attention
mechanism and the calculation of neighborhood representation
in III-B. Then we describe the structure-adaptive neighborhood
preserving encoder in III-C. Finally, we introduce the objective
functions in III-D to realise the neighborhood preserving
learning.

B. Neighborhood Attention Mechanism

We design a neighborhood attention mechanism to preferen-
tially extract useful content from each input frame conditioned
on a pre-extracted neighborhood representation, inspired by a
memory state introduced in [66]. In recurrent neural networks,
the vector memory state mt ∈ Rb updates by attending over
the former memory state mt−1 and the current input, where
t denotes the time step. Specifically, mt absorbs the content
from current input frame feature vt and updates as follows:

mt = softmax
(
mt−1W q([mt−1;vt]W k)T√

dk

)
[mt−1;vt]W v.

(2)
Here dk denotes a scaling factor, W ∗ is a learnable weight ma-
trix and [x1;x2] denotes row-wise concatenation of two tensors
x1 and x2. The memory states are randomly initialised, i.e., m0

is set as a random vector. (2) is considered to be an extension
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of self-attention [67]: A(Q,K,V ) = softmax(QKT

√
dk

)V .
The query Q is to perform a scaled dot-product attention over
the keys K. The product is then transformed to a set of weights
via softmax-function to obtain a weighted average value from
V . Here, K and V are calculated from [mt−1;vt], and Q
is calculated from mt−1 [67]. In this way, this self-attention
mechanism can learn to write content from input frame into
the memory state based on the information already contained
in the memory.

The self-attention mechanism only refers to the inherent
information in the video, which makes the learned hash
functions less effective for nearest neighbor search. In order
to better exploit neighborhood relationships among videos, we
extend the self-attention mechanism to neighborhood attention
mechanism via embedding a pre-extracted neighborhood rep-
resentation into the memory state. Given an input video S,
we extract a neighborhood representation n ∈ Rb which is
assumed to deliver adequate information in neighbors of the
video. We incorporate n into the memory state to guide the
encoding. While there are a variety of ways to incorporate n
into the memory, we choose to inject it into the memory state
at the first time-step:

m1 = softmax
(
nW q([n;v1]W k)T√

dk

)
[n;v1]W v. (3)

When t > 1, the memory state updates with (2). As the
information in neighbor videos has been injected into the
memory, at each time-step, it interacts with the new input
frame feature and guide to incorporate relevant content into
the memory state.

Neighborhood representation: Given a small anchor set
which contain n anchors {u∗j}nj=1, we design the neighbor-
hood representation ni for an input video Si as a pseudo
neighbor or an integration of pseudo neighbors retrieved from
{u∗j}nj=1 (i ∈ [1, N ] denotes the index of the video in the
database). An intuition is that the neighborhood representa-
tions calculated from similar videos tend to be similar, hence
they can guide to encode similar videos to similar binary
vectors.

Among a variety of ways to establish the anchor set
{u∗j}nj=1, we conduct clustering in video feature space such
that these anchor points have a strong representation power
to adequately cover the vast video data points [68]. It allows
each anchor point to have equal opportunity to be retrieved as
neighbor such that more discriminative neighborhood repre-
sentations can be obtained. Specifically, we use a pre-trained
LSTM autoencoder [27] to extract a video feature ui ∈ Rb for
each video, which has the same dimension with the memory
state. We use {ui}Ni=1 to denote video features of the training
database. We conduct K-means clustering on {ui}Ni=1 to obtain
n clustering centers {u∗j}nj=1. We consider {u∗j}nj=1 to be
an anchor set. For an input video Si, we search a nearest
neighbors by sorting l2-norm distances between ui and all
anchors in {u∗j}nj=1. We use u∗i1,u

∗
i2, ...,u

∗
ia(i1, i2, ..., ia ∈

{1, 2, ..., n}) to denote the a nearest anchors. We concatenate
them, which are sorted in ascending order according to their
distances from ui, in a row-wise manner. We then linearly

project the concatenation to obtain the neighborhood repre-
sentation ni ∈ Rk:

ni = Wnu[u∗i1;u∗i2; ..;u∗ia] + rn, (4)

where r∗ denotes a learnable bias.
It is noteworthy that we only build {u∗j}nj=1 in a prepro-

cessing stage such that it can be reused for future training and
Hamming search. While we could also construct the anchor set
using the latent outputs during the learning of SNPH detailed
in Section III-C, we empirically found that it does not bring
significant improvement on the final performance. Considering
that the calculation of ni is also required during test stage, we
set a� n� N , such that calculating a nearest anchors from
a small anchor set brings negligible extra time cost. Meanwhile
the anchor set does not require much storage space, therefore
our method is practical for search systems.

C. Structure-adaptive Neighborhood Preserving Encoder

To better capture the temporal dependencies both intra-
activity and inter-activities, we design a structure-adaptive
neighborhood preserving encoder (SNPH encoder), which is
inspired by boundary-aware LSTM network [37]. The SNPH
encoder consists of a two-layer LSTM network integrated with
neighborhood attention mechanisms and a hash layer. In the
first recurrent layer, it automatically identifies time boundaries
between frames and adaptively divides a long-range input
video into several segments. It independently encodes each
segment to a latent representation to avoid mixture of infor-
mation in different segments. In the second recurrent layer, it
projects these segment representations to a high-dimensional
real-valued latent output such that the hierarchical structure
of the video can be exploited. Finally, the hash layer maps
this high-dimensional real-valued latent output to a compact
binary vector.

The core of SNPH encoder is a boundary detector d that is
able to identify time boundaries between frames. We use hx,t

and cx,t ∈ Rb to denote the hidden state and the cell state of
the x-th recurrent layer at time step t respectively. At each
time step, the detector dt ∈ {0, 1} is computed based on the
current input frame vt and hidden state of the first recurrent
layer h1,t−1 as follows:

dt = τ(σ(W dvvt +W dhh1,t−1 + rd)),

τ(x) =

{
1, if x ≥ 0.5
0, otherwise,

(5)

where σ denotes sigmoid function: σ(x) = 1
1+e−x . dt = 1

means that a time boundary is detected, then we feed h1,t−1

to the second recurrent layer. Meanwhile we reinitialize the
memory cell and hidden state of the first recurrent layer before
next time-step update. dt = 0 means that no time boundary is
detected, then the information keeps passing through the first
layer. We formulate this process as follows:

c1,t−1 ← c1,t−1 · (1− dt), (6)
h1,t−1 ← h1,t−1 · (1− dt). (7)
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We formulate the updates of both recurrent layers as follows:

ix,t = σ(W ivxx,t +W ihhx,t−1), (8)
fx,t = σ(W fvxx,t +W fhhx,t−1), (9)
cx,t = BN(fx,t � cx,t−1 + ix,t �MLP(xx,t), (10)
hx,t = tanh(cx,t), (11)

where MLP and BN denote multiple layers perceptron and
batch normalization respectively. Here, xx,t denotes the cur-
rent input of the x-th recurrent layer. For the first layer, x1,t

is equal to the frame feature vt, and for the second layer, x2,t

is equal to dth1,t−1. tanh is a hyperbolic tangent function:
tanh(x) = sinh(x)

cosh(x) = ex−e−x

ex+e−x . With time boundaries detected
in the first recurrent layer, each video is adaptively divided
into s segments (s < M is a positive integer depending
on the input video) which are then independently encoded
as latent representations. The latent representations of these
segments are passed to the second recurrent layer to extract
the hierarchical structure of the video.

Now we integrate the neighborhood attention mechanism
proposed in Section III-B into the hierarchical recurrent layers
by substituting (10) with:

cx,t = BN(fx,t � cx,t−1 + ix,t �MLP(mx,t). (12)

Here, the vector memory mx,t replaces the input vector xx,t

in a conventional recurrent layer such that irrelevant content
in the input frame can be suppressed.

We initialize the memory state of neighborhood attention
mechanism in the first recurrent layer m1,t with the neigh-
borhood representation n with (3), meanwhile we randomly
initialize the memory state in the second recurrent layer m2,t.
As we expect to independently encode each segment in the
first recurrent layer, we need to reinitialize m1,t once a
time boundary is detected such that the content in previous
segments has no impact on later encoding. We use the neigh-
borhood representation to reinitialize m1,t such that it can
provide guidance all through the encoding phase. That is, we
initialize/reinitialize m1,t before the next time-step update as
follows:

m1,t−1 ←
{

n, if t = 1
dtn + (1− dt)m1,t−1, t > 1.

(13)

After obtaining the latent output from the last hidden state
of the second recurrent layer h2,s, we feed it to the hash layer
to obtain a single binary vector:

t = tanh(W thh2,s + r), (14)
b = sgn(t), (15)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.
t ∈ (−1, 1)k is considered to be a relaxed binary vector. In
this way, the SNPH encoder is able to capture the hierarchical
structure of the input video and learn neighborhood preserving
hash functions.

D. Objective Functions

To enable neighborhood preserving hash learning, we de-
sign our model in an encoder-decoder scheme with several
objective functions to reconstruct specific information from
the relaxed binary vector. 1) We design an LSTM decoder
to reconstruct the input frames to ensure that the hierarchical
structure of the input video is well captured. We train our
model to minimize the distortion between input frame features
and reconstructed ones, which is formulated as a visual content
reconstruction loss Lvr. 2) We build an adjacency matrix in
the video feature space, aiming to reconstruct this adjacency
matrix in the learned Hamming space. We train our model
to minimize the discrepancy between the similarity of each
video feature pair and the similarity of each binary vector pair,
which is formulated as an adjacency reconstruction loss Lar.
3) To learn more discriminative hash functions, we further
develop a pseudo label set. We enforce each binary vector
to approximate the corresponding pseudo label such that the
intra-class distance is minimized and inter-class distance is
maximized in the Hamming space. Accordingly, we design a
center reconstruction loss Lnr to describe the distance between
the pseudo label and the relaxed binary vector. Our loss
function L is the weighted sum of these three losses:

L = α1Lvr + α2Lar + α3Lnr, (16)

where α1, α2 and α3 are hyper-parameters to balance these
three loss terms.

Visual content reconstruction loss: To encourage the
binary vectors to well capture the hierarchical structure of
videos, we utilize an LSTM decoder to recurrently reconstruct
the frame features from the relaxed binary codes. Specifically,
we project the relaxed binary vector ti to a l-D vector ṽ0

i

and consider it the only information provider for the decoder.
We inject ṽ0

i into the decoder at first time step, then obtain
the first reconstructed frame feature ṽ1

i ∈ Rl from the output
of the decoder. Afterwards, we feed the current output to the
decoder to obtain next reconstructed frame feature recurrently.
After M time steps, we obtain M reconstructed frame features
{ṽfi }Mf=1. The decoding process can be presented as:

{ṽfi }
M
f=1 = D(ti,Ψ), (17)

where Ψ is the parameter set of the LSTM decoder. We
minimize the discrepancy between reconstructed frame fea-
tures {ṽfi }Mf=1 and the input frame features {vfi }Mf=1. We
use Mean Square Error (MSE) to formulate the visual content
reconstruction loss Lvr as:

Lvr =
1

lMN

N∑
i=1

M∑
f=1

||vfi − ṽfi ||
2
2. (18)

Adjacency reconstruction loss. To calculate the adjacency
reconstruction loss Lar, we first establish an adjacency matrix
A ∈ RN×N which reflects the neighborhood relationships
in the video feature space {yi}Ni=1 ∈ Rb. Each entry of it
Aij ∈ {−1, 1} denotes the similarity between two training
videos Si and Sj (i and j ∈ {1, 2, ..., N}). The intuition is
that an optimized feature space can reflect semantic clustering
even though no label is utilized for training. Therefore we
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can extract the pairwise similarity between videos in this
feature space as an auxiliary target for self-supervised training.
However, the time complexity of directly building a large
adjacency matrix is very high given very large N . To enable
efficient training, we refer to [68] that first builds a truncated
adjacency matrix Y ∈ RN×n by using a small anchor set
{y∗p}np=1 (n << N ). Similarities of all N video points are
measured with respect to these n anchors, and the adjacency
matrix A is approximated using these similarities, which
greatly reduces the time complexity.

Specifically, we conduct K-means clustering on {yi}Ni=1 to
get an anchor graph {y∗p}np=1 which can adequately represent
the training videos. For each video Si, we calculate its e
nearest anchors y∗i1,y

∗
i2, ...,y

∗
ie (i1, i2, ie ∈ [1, n]). Then we

obtain a truncated similarity matrix Y ∈ RN×n, where each
entry denotes the similarity between a video feature yi and an
anchor point y∗p :

Yip =


exp(−l2(yi,y

∗
p)/bw)∑e

p′=1
exp
(
−l2(yi,y∗ip′ )/bw

) ,∀p ∈ 〈i〉
0, otherwise

(19)

where 〈i〉 denotes the indices of e nearest anchors of yi. bw is
a bandwidth parameter and l2 denotes l2-norm distance. Then
we calculate a non-negative and sparse approximate adjacency
matrix Aapprox based on Y :

Aapprox = Y Λ−1Y T , (20)

where Λ = diag(Y T1) ∈ Rn×n. We set each entry of the
final adjacency matrix Aij = 1 if the (i, j)-th entry of the
approximate adjacency matrix Aapproxij > 0 and Aij = −1
otherwise.

We define the similarity between two binary vectors bi
and bj as 1

kb
T
i bj . For steady training, we instead use an

approximate similarity 1
k t
T
i tj , where ti is the relaxed binary

vector calculated with (14). We use Mean Square Error (MSE)
to formulate the discrepancy between the similarity of each
video feature pair and the similarity of each binary vector
pair. Meanwhile, we apply a quantization error with regard
to bi and ti as a penalty term. We have the specific form of
adjacency reconstruction loss Lar for (16):

Lar =
1

N2

N∑
i=1

N∑
j=1

(Aij −
1

k
tTi tj)

2 +
1

kN

N∑
i=1

||bi − ti||22.

(21)
Another intuition is that with video features being optimized

during training, more convincing guidance can be provided by
an updated A. This is inspired by [69]–[71] which iteratively
bootstrap the outputs of a network to serve as targets for
an enhanced representation. In this paper, we consider video
features to be latent outputs of SNPH encoder which update
during training. We use these features to construct and update
the adjacency matrix, in other words, we use the adjacency
matrix derived from the previous epoch to guide the current
training. At a beginning step, we train our SNPH model
with only visual content reconstruction loss Lvr in (18). The
memory states of the neighboring attention mechanisms are
all randomly initialised. Given the i-th video, we extract the

latent output from last hidden state of the second recurrent
layer h2,si as yi with (11). We establish A based on {yi}Ni=1.
Now that we have obtained A, in later steps we train our
model with full loss L in (16) and iteratively bootstrap h2,si
to update {yi}Ni=1 and A to learn an enhanced binary feature
vector. We repeat this process until convergence.

Center reconstruction loss: To learn more discriminative
hash functions, we further develop a pseudo label set where the
dimension of each pseudo label is the same as the code length.
We enforce the binary vector to approximate the corresponding
pseudo label. Specifically, we use a pre-trained autoencoder
to extract a k-D vector representation for each video. It is
noteworthy that we can re-use the SNPH encoder trained for
Lar calculation in the beginning step as described in previous
section, such that we need not further train an autoencoder. We
use this encoder to extract a k-D vector t′i for each training
video Vi with (14). We conduct K-means clustering on {t′i}Ni=1

to obtain q clustering centers {t∗j}
q
j=1 (q � N). The building

of {t∗j}
q
j=1 is only needed in a pre-processing stage, which

will not bring extra time cost for future training and Hamming
search.

We consider the center point t∗i1 (i1 ∈ {1, 2, .., q}) which
is closest to t′i among {t∗j}

q
j=1 to be the pseudo label of

the i-th video. We directly minimize the discrepancy between
t∗i1 and the relaxed binary vector ti, such that the intra-class
distance is minimized and inter-class distance is maximized in
the Hamming space. We formulate the center reconstruction
loss Lnr with MSE:

Lnr =
1

Nk

N∑
i=1

||t∗i1 − ti||22. (22)

IV. EXPERIMENTS

In this section, we present the details of exploited datasets,
evaluation metrics, experimental settings, experimental results
and model analysis.

A. Datasets and Evaluation Metrics

To evaluate the effectiveness of our proposed SNPH method,
we conducted extensive experiments on three large-scale video
collections: FCVID1, ActivityNet2 and YFCC3.

Fudan-Columbia Video Dataset (FCVID) [72] consists of
91,223 Youtube videos, which are annotated into 239 cate-
gories manually. It covers a wide range of topics such as sports
and various events with average length of 167 seconds. We
selected 45,585 videos for the train split and the rest 45,600
videos as queries and gallery videos, which was the same with
the setting in [32] and [34].

ActivityNet [73] contains around 20K video clips that clas-
sified into 200 categories covering a wide range of complicated
human daily activities. Particularly, we used 9,722 videos for
training split. Since the labels of those videos in original test
split were not released, we randomly chose 1000 videos from

1https://http://bigvid.fudan.edu.cn/FCVID/
2http://activity-net.org/
3https://webscope.sandbox.yahoo.com/
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(a) FCVID 16 bits (b) FCVID 32 bits (c) FCVID 64 bits

(d) ActivityNet 16 bits (e) ActivityNet 32 bits (f) ActivityNet 64 bits

(g) YFCC 16 bits (h) YFCC 32 bits (i) YFCC 64 bits

Fig. 2: The comparison of search results among a variety of hashing methods in terms of mAP@K over three datasets with
various code lengths.

the validation set as query instances, and used the remaining
3,760 validation videos to form the gallery.

Yahoo Flickr Creative Common 100 Million
Dataset (YFCC) [74] is one of the largest public video
dataset, which collects 0.8M video clips with average length
of 37 seconds. Due to some damaged data and invalid
download links, we employed 511,044 videos for our
experiment. In detail, we used 409,788 unlabeled videos
for unsupervised training and 101,256 labeled videos for
evaluation. There are 80 scenes collected from the third level
of MIT SUN scene hierarchy [75] in the test split. Following
the setting in [34], we randomly chose 1,000 videos with
non-zero label as queries and the remaining labeled videos as
search database.

We followed the evaluation protocols in [31], [32], i.e.,
Hamming ranking, and employed the following two evaluation
metrics: 1) We exploited mean Average Precision at top K
(mAP@K) retrieved videos as the main evaluation metric to
evaluate the performance of hashing methods. mAP@K is
defined as the mean of average precision of retrieved relevant

videos number in the top K results [76]. 2) We used Precision-
Recall (PR) curve as an assisted measurement [77]. Same as
previous work [31], [32], we defined ground-truth neighbors
for a query if they shared at least one label with this query.

B. Implementation Details

Without loss of generality, we uniformly selected 25 frames
to represent each video as [32] and [34] did. For each frame,
we used VGG16 [56] pre-trained on ImageNet [78] to extract
4096-D frame features. It is noteworthy that other pre-trained
networks such as ResNet [79] also work, and we chose VGG16
for fair comparison with other methods. We used a single
attention head for each encoding layer with dimension of the
memory state 256. As for K-means clustering, we conducted
15 iterations. We set the size of anchor set n as 2000. We set
both numbers of nearest anchors a and e the same as 3. We set
the size of pseudo label set q as 600. We set the scaling factor
dk as 256. We empirically set three hyper-parameters α1, α2
and α3 as 0.9, 0.1 and 0.1 respectively. We set the learning
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(a) FCVID 32 bits (b) FCVID 64 bits (c) ActivityNet 32 bits (d) ActivityNet 64 bits

Fig. 3: The comparison of precision-recall curves for different video hashing methods on FCVID and ActivityNet with binary
codes of different lengths.

rate and mini-batch size as 3 × 10e−4 and 256 respectively.
We trained our model with Adam optimization algorithm [80].
We set the maximum training epoch as 100 on both FCVID
and ActivityNet, and 15 on YFCC. We conducted all these
experiments under Pytorch4 framework on a Geforce GTX
1080 Ti GPU.

Since the derivative of (5) is zero almost anywhere, we
chose to use special training expedients as [37] and [81]
did. During the forward pass in training, we set τ(x) =
1σ(x)>z, z ∼ U [0, 1], where U [0, 1] denotes uniform distri-
bution in [0, 1] and 1 is the indicator function. During back-
propagation, we set the derivative of τ as ∂τ

∂x (x) = σ(x)(1−
σ(x)). During test stage, we calculated τ in a deterministic
form with (5). Since the derivative of sgn() in (15) was zero
almost everywhere, we referred to BinaryNet [82] to handle
the ill-posed gradient problem.

C. Results and Analysis

Comparisons with state-of-the-arts: We used several
state-of-the-art unsupervised hashing methods as baselines
in the experiment: Iterative Quantization (ITQ) [2], An-
chor Graph Hashing (AGH) [68], Submodular video hash-
ing (Submod) [45], Multiple Feature Hashing (MFH) [22],
Deep Hashing (DH) [83], Joint Temporal Appearance
Encoder (JTAE) [33], Self-Supervised Temporal Hashing
(SSTH) [31], Self-Supervised Video Hashing (SSVH), Unsu-
pervised Variational Video Hashing (UVVH) [25], and Neigh-
borhood Preserving Hashing (NPH) [34]. For the consistency
of comparison, we kept the experimental settings for all these
methods the same.

On FCVID dataset, SNPH consistently outperforms the
other compared methods with all code lengths in terms of
mAP@K as shown in Fig. 2 (a)-(c). The most competitive
methods are NPH and UVVH. Specifically, SNPH outperforms
NPH by 2.9%, 2.8%, 3.1% in terms of mAP@5, mAP@20 and
mAP@60 respectively with 16 bits. It outperforms UVVH by
3.7% and 4.5%, 2.8% in terms of mAP@20 and mAP@60
respectively with 64 bits. In addition, it outperforms NPH by
3.5% in terms of mAP@5 with 32 bits and 1.4% in terms
of mAP@20 with 64 bits. Besides, it outperforms the other
baselines by a large margin. We also compared SNPH with two
other methods, LA-CODE [35] and DHTA [18]. We listed the

4http://pytorch.org/

mAP@20 results of SNPH, LA-CODE and DHTA with 128
bits in TABLE I. It shows that SNPH significantly outperforms
these two methods. Furthermore, the PR curves shown in
Fig. 3(a) and (b) indicate that SNPH consistently achieves
higher precision than NPH, JTAE, SSTH and SSVH at the
same rate of recall.

TABLE I: mAP@20 results of SNPH, LA-CODE and DHTA
with 128 bits on FCVID

Methods SNPH LA-CODE DHTA
mAP@20 0.341 0.328 0.320

On ActivityNet dataset, SNPH consistently outperforms
these state-of-the-art methods with all code lengths in terms
of mAP@K as shown in Fig. 2 (d)-(f). Specifically, SNPH
outperforms the most competitive NPH by 1.4% and 1.7%
in terms of mAP@5 with 16 bits and 32 bits respectively. It
should be noticed that the search gallery only contains around
3,000 samples, and there is probably no ground-truth neighbor
for some queries. Thus the mAP@K results on ActivityNet for
all methods seem not so good as that on FCVID especially
with a large K. In addition, PR curves shown in Fig. 3(c) and
(d) indicate that SNPH consistently achieves higher precision
than the other methods at the same rate of recall.

On YFCC dataset, SNPH outperforms all the other methods
with different code lengths except for UVVH as shown in
Fig. 2 (g)-(i). Specifically, SNPH significantly outperforms
UVVH with 32 bits and 64 bits. While SNPH is not as good as
UVVH in view of mAP@5 with 16 bits, it outperforms UVVH
when K becomes larger, which shows the strength of SNPH in
general. In addition, SNPH outperforms NPH by 3.1%, 2.0%,
1.8% in terms of mAP@5, mAP@20 and mAP@40 with 16
bits. And it outperforms NPH by 2.3% and 1.0% in terms of
mAP@5 with 32 bits and 64 bits respectively.

Cross-dataset evaluation comparisons: To investigate how
SNPH generalizes to cross-dataset search tasks, we trained
various methods on FCVID and test on YFCC and compare the
performances. TABLE II lists the cross-dataset performances
of various hashing methods in view of mAP@20 with 64 bits.
As can be seen, the search performances of all these methods
decrease in different degrees compared with training and
testing both on YFCC dataset. It indicates that the performance
is associated with the scale and domain of the training dataset.
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TABLE II: Cross-dataset mAP@20 of various methods when
training on FCVID and test on YFCC with 64 bits. Red
number indicates the performance drop compared with training
and testing both on YFCC.

Method SSTH SSVH NPH SNPH
mAP@20 0.155↓ 6.3 0.173↓ 7.8 0.180↓ 6.0 0.183↓ 5.2

TABLE III: mAP@K results of different on FCVID with 64-
bit codes.

Methods K=20 K=40 K=60 K=80 K=100
SNPH-randi 0.289 0.238 0.213 0.196 0.182
SNPH-rnn 0.291 0.241 0.215 0.198 0.184
SNPH-uni 0.292 0.242 0.215 0.198 0.184
SNPH-sin 0.294 0.240 0.213 0.196 0.183

SNPH 0.300 0.250 0.224 0.206 0.192

SNPH still outperforms the other methods in the cross-dataset
evaluation setting. Besides, the performance drop of SNPH
is less than the other methods, which indicates its better
generalization cross different datasets.

Effectiveness of components of SNPH: Firstly, we eval-
uated the effect of the neighborhood attention mechanism.
We compared SNPH with the following two baselines: 1)
SNPH-randi. we randomly initialized the memory states with-
out using neighborhood representation ni, i.e. our proposed
neighborhood attention mechanism degraded to conventional
self attention mechanism. 2) SNPH-rnn. We substituted mt

with directly the input xt in (12), i.e. we removed the attention
mechanism. All the other settings of these three methods were
kept the same. We listed the mAP@K scores of SNPH-randi,
SNPH-rnn and SNPH in Table III. By comparing SNPH-randi
and SNPH-rnn we can see that the self-attention mechanism
itself has little help to learn effective hash functions. This is
because it merely refers to the inherent content in a video
while ignoring the neighborhood relationships among videos,
which is unsuitable for nearest neighbor search. In addition,
SNPH consistently outperforms SNPH-randi and SNPH-rnn,
which indicates that our proposed neighborhood attention
mechanism has significant impact on the final performance. It
shows that exploiting the neighborhood relationships properly
is significant with regard to the nearest neighbor search task,
which is the major contribution of our proposed neighborhood
attention mechanism over existing self-attention mechanism.

Next, we tested the effectiveness of the hierarchical
structure-adaptive architecture. We compared SNPH with fol-
lowing two baselines. a) SNPH-sin. We substituted the 2-layer
LSTM with a single layer LSTM. b) SNPH-uni. We removed
the boundary detector, instead we equally divided each video
into fixed-length segments and encoded them via a hierarchical
recurrent encoder. These two baselines were both equipped
with neighborhood mechanisms. We reported the mAP@K
results of SNPH-sin, SNPH-uni and SNPH on FCVID with 64
bits in TABLE III. As can be seen, SNPH outperforms these
two baselines remarkably. This indicates that the hierarchical
recurrent architecture of structure-adaptive encoder is more
powerful than a single layer LSTM architecture. Besides,
the boundary detector, which better exploits the hierarchical

TABLE IV: mAP@K results of SNPH with different loss
terms on FCVID.

Methods K=20 K=40 K=60 K=80 K=100
SNPHoLvr 0.256 0.196 0.167 0.147 0.133
SNPHoLar 0.217 0.179 0.161 0.150 0.142
SNPHoLnr 0.130 0.111 0.102 0.094 0.088
SNPH-Lvr 0.224 0.181 0.164 0.153 0.143
SNPH-Lar 0.263 0.202 0.172 0.151 0.138
SNPH-Lnr 0.285 0.234 0.209 0.192 0.179

SNPH 0.300 0.250 0.224 0.206 0.192

TABLE V: mAP@20 results for SNPHf and SNPH on FCVID
with various code lengths.

Methods 16 bits 32 bits 64 bits
SNPHf 0.159 0.247 0.290
SNPH 0.169 0.258 0.300

structure of the video, can greatly improve the search accuracy.
Then we evaluated the impact of each loss term in (16).

We denoted SNPH that was trained with only visual content
reconstruction loss Lvr as SNPHoLvr and trained without Lvr
as SNPH-Lvr. Similarly, we proposed four other baselines
SNPHoLar, SNPH-Lar, SNPHoLnr, SNPH-Lnr. We reported
the mAP@K results of these baselines on FCVID with 64 bits
in TABLE IV. Firstly, we can observe that mAP@K results of
SNPHoLvr are better than SNPHoLar when K is small, but
worse than SNPHoLar when K becomes larger. One possible
reason is that the visual content reconstruction loss encourages
the model to capture inherent information in the video, thus
it is beneficial to search a small number of videos that are
most similar. In contrast, when more videos are expected to be
searched, exploiting the neighborhood relationships between
videos becomes more important. Furthermore, when we re-
move one of these three losses to train SNPH, the performance
drops in different degrees. It indicates that all these loss terms
are beneficial to enhance the search accuracy.

To show the advantage of the center reconstruction loss Lnr
over the neighborhood information reconstruction loss used
in the previous work [34], we compared SNPH with SNPHf
where Lnr was substituted with the original neighborhood
reconstruction loss. We reported the mAP@20 results of
SNPH and SNPHf on FCVID in TABLE V. It shows that the
center reconstruction loss which directly aligns binary vectors
to pseudo labels efficiently leads to more discriminative hash
functions and further improves the search performance.

TABLE VI: mAP@K results of SNPH-plain, SNPH-rd and
SNPH with 64 bits on FCVID.

Methods K=20 K=40 K=60 K=80 K=100
SNPH-plain 0.260 0.200 0.171 0.151 0.139

SNPH-rd 0.287 0.238 0.212 0.195 0.182
SNPH 0.300 0.250 0.224 0.206 0.192

We evaluated the anchor set {u∗i }ni=1 and pseudo label
set {t∗i }

q
i=1 built in this work. Accordingly, we proposed

two compared baselines. 1) We used two random sets, where
all the points were randomly generated, to replace {u∗i }ni=1

and {t∗i }
q
i=1. The neighborhood representation and pseudo
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Fig. 4: Top-10 retrieved results. Blue for FCVID and yellow for ActivityNet. Purple border denotes queries. Green borders
denote correct retrieved results and red borders denote incorrect retrieved results. According to the qualitative analysis, we can
see that our proposed SNPH obtains higher search accuracy than the other methods.

TABLE VII: mAP@K results of SNPH0, SNPH1, SNPH2 and
SNPH3 on ActivityNet with 64-bit codes.

Methods K=5 K=20 K=40 K=60 K=80
SNPH0 0.179 0.100 0.063 0.044 0.035
SNPH1 0.213 0.111 0.068 0.049 0.038
SNPH2 0.217 0.115 0.070 0.050 0.039
SNPH3 0.215 0.113 0.069 0.050 0.040

label were retrieved from these random sets as described in
Section III-B and Section III-D. We denoted this baseline as
SNPH-rd. 2) We removed the loss term Lnr and randomly
initialized the memory state, denoting it as SNPH-plain. We
listed mAP@K results of SNPH-plain, SNPH-rd and SNPH
with 64 bits on FCVID in TABLE VI. We can see that SNPH-
rd significantly outperforms SNPH-plain, which indicates that
the neighborhood representations and pseudo labels retrieved
from a randomly built set can still provide effective guidance.
This is because these vectors can reflect the neighborhood
relationships among videos, i.e., if two videos are similar, they
have similar neighborhood representations and similar pseudo
labels. Besides, we can see that SNPH outperforms SNPH-rd.
This confirms that a set built by K-means clustering has strong
power to represent the vast video data points, and the points
in this set can better reflect the neighborhood relationships
among videos.

Furthermore, we evaluated the effect of updating the adja-
cency matrix A to fine-tune the network. Let SNPH0 denote
SNPH that is trained without Lar and let A0 denote the
adjacency matrix calculated based on outputs of SNPH0. We

added Lar which was calculated with A0 to fine-tune SNPH0
and obtain SNPH1. A1 was calculated based on outputs of
SNPH1. Similarly, we fine-tuned SNPH1 with guidance of
A1 to obtain SNPH2. Likewise, SNPH3 was a fine-tuned
version of SNPH2. We presented mAP@K results of SNPH0,
SNPH1, SNPH2 and SNPH3 on ActivityNet with 64-bit codes
in Table VII. By comparing SNPH1 with SNPH0, we can see
that Lar brings great improvement to the search accuracy. This
shows that the pairwise similarity derived in the optimized
feature space can provide reliable guidance for self-supervised
learning. By comparing SNPH1, SNPH2 and SNPH3, we can
see that updating the adjacency matrix can bring about further
performance improvement, while the improvement becomes
less significant with more iterations. Considering both the
training efficiency and retrieval accuracy, we can choose
SNPH1 as our final version.

Qualitative results: We presented the top-10 retrieved
results with 64-bit binary codes of SNPH, NPH and SSTH
on FCVID and ActivityNet datasets in Fig. 4. For the sake
of brevity, we used a sampled frame to represent the cor-
responding video. As can be seen, SNPH obtains higher
search accuracy than the other methods on both datasets under
different backgrounds and shooting angles. For “toyFigure”
category, SNPH retrieves all correct videos but NPH retrieves
two wrong videos and SSTH is only half right. On ActivityNet,
the scene is more complicated, and all these methods make
mistakes in different degrees. For example, SNPH mistakes
the activity “mixing drinks” with “pouring drinks”, while both
activities contain the action “pouring”. In contrast, NPH and
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Fig. 5: Some failure cases in top-10 retrieved results of SNPH. Green borders denote correct retrieved results and red borders
denote incorrect retrieved results. As can be seen, when two movies contain similar scenes and actions, SNPH tends to consider
them to be similar.

Fig. 6: Example boundary detection results on FCVID. Red vertical lines indicate activations of the boundary detector. The
rows from top to bottom are videos in categories “making sushi”, “gorilla” and “basketball” respectively.

SSTH are more likely to mistake the action pouring with some
incorrect actions such as drinking.

We further listed some other failure cases on in Fig. 5.
As can be seen, when two movies contain similar scenes
and actions, SNPH tends to consider them to be similar.
For example, SNPH mistakes “snow boarding” with “snow
tubing” since there are snow in the background and people
sliding with some vehicles on the snow in these videos. In the
second row, SNPH mistakes “play violin” with “play guitar”
since violin and guitar look very similar and these activities
share similar actions. In the third row, the query video is
in category “assemble bicycle”, while five wrong videos are
in category “fix bicycle”. It should be aware that it is hard
to distinguish these two activities if no professional label is
available. These failure cases may show a limitation of self-
supervised learning since videos which contain similar scenes
and actions tend to have similar spatio-temporal features via
unsupervised learning.

As shown in Fig. 6, we picked several representative
boundary detection results on FCVID to observe whether the
structure-adaptive encoder well detects the time boundaries
across frames in the video. It qualitatively shows that the
output of the boundary-aware detector is consistent with our
commonsense. The first example is an instruction movie for
sushi making. There are abrupt shot changes in this case,
and boundaries detected by the encoder are all overlapped
with these shot changes. As for the second example, some
transitions last for several frames (shown in purple area)
and the detected boundaries successfully lay in these areas.
However, when there is no such clear shot change as the
third example shows, the encoder tends to uniformly divide

TABLE VIII: Time for encoding, feature extraction frame and
Hamming search of different methods with 64-bit codes on
FCVID.

Methods Encoding Frame feature extraction Search
SSTH 0.88ms

20.41ms 8.77msSSVH 1.03ms
NPH 1.42ms

SNPH 1.60ms

the video in several short segments. A possible reason is that
SNPH tends to shorten the input path such that the content in
the long frame sequence can be better captured, which plays
a similar role with a conventional hierarchical RNN encoder.

Implementation time: Given a query video, the imple-
mentation time includes: 1) The encoding time. Time cost
to generate binary codes from a sequence of frame features
by using different deep video hashing methods. 2) Frame
feature extraction time. Time cost to extract a sequence of
frame features via CNN. 3) Hamming search time. Time cost
to search nearest neighbor videos for a query video in the
Hamming space. It should be aware that the frame feature ex-
traction time and Hamming search time are consistent among
different hashing methods. We reported the implementation
time of SNPH, NPH, SSTH and SSVH in TABLE VIII on
FCVID dataset with 64 bits. We implemented these models
in Python, using the Pytorch library. The computing platform
was equipped with a 4.0 GHz Intel CPU, 32 GB RAM, and
NVIDIA GTX 1080Ti. As can be seen, all these methods are
practical for search engines in view of encoding efficiency. As
the CNN feature extraction lead to high time cost, we input
frame features instead of raw frames to train our model for
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sake of training efficiency. Besides, the Hamming search time
on a dataset as large as 45,600 is about 8ms, which indicates
that our method can scale to large video database.

V. CONCLUSION

In this paper, we have presented an unsupervised video hash
method, structure-adaptive neighborhood preserving hashing
for scalable video search. Compared to previous works, SNPH
can better preserve neighborhood relationships between videos
and make full use of the hierarchical structure of a video.
SNPH outperforms state-of-the-arts on three public benchmark
datasets. There are several interesting directions for future
work. Firstly, the calculation of neighborhood representation
is also required during test stage. While the extra time cost is
negligible, we can try to avoid such operation by incorporating
knowledge distilling into our method. In addition, we directly
input extracted CNN features to train our model, which may
omit some important information in the raw frames for nearest
neighbor search. To further improve the performance, we may
use raw frames as input and train the CNN together during
the hash model training. Furthermore, we may develop semi-
supervised learning methods that use some labels to help the
model distinguish hard sample pairs.
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